
March 2023

Grounded Decoding: Guiding Text Generation
with Grounded Models for Embodied Agents
Wenlong Huang1*, Fei Xia2, Dhruv Shah3, Danny Driess2, Andy Zeng2, Yao Lu2, Pete Florence2, Igor Mordatch4,
Sergey Levine23, Karol Hausman2 and Brian Ichter2

*Work done as an intern at Google, 1Stanford University, 2Robotics at Google, 3UC Berkeley, 4Google Research

Recent progress in large language models (LLMs) has demonstrated the ability to learn and leverage
Internet-scale knowledge through pre-trainingwith autoregressivemodels. Unfortunately, applying such
models to settings with embodied agents, such as robots, is challenging due to their lack of experience
with the physical world, inability to parse non-language observations, and ignorance of rewards or safety
constraints that robots may require. On the other hand, language-conditioned robotic policies that learn
from interaction data can provide the necessary grounding that allows the agent to be correctly situated
in the real world, but such policies are limited by the lack of high-level semantic understanding due to
the limited breadth of the interaction data available for training them. Thus, if we want to make use of
the semantic knowledge in a language model while still situating it in an embodied setting, we must con-
struct an action sequence that is both likely according to the languagemodel and also realizable according
to grounded models of the environment. We frame this as a problem similar to probabilistic �ltering: de-
code a sequence that both has high probability under the language model and high probability under a
set of grounded model objectives. We demonstrate how such grounded models can be obtained across
three simulation and real-world domains, and that the proposed decoding strategy is able to solve com-
plex, long-horizon embodiment tasks in a robotic setting by leveraging the knowledge of both models.
The project’s website can be found at grounded-decoding.github.io.

1. Introduction
Recent works have demonstrated robots that are
increasingly pro�cient at understanding and act-
ing upon natural language, whether through plan-
ning or conditioned policies. Complementing such
progress, the �eld of natural language processing
has recently seen large language models (LLMs) be-
come ubiquitously used as pre-trained or few-shot
prompted models, due to their impressive few-shot
performance and vast knowledge-base. These LLMs
have e�ciently learned from web-scale data through

autoregressively modeling the probability distribu-
tion over text tokens and thus generate text. How-
ever, the nature of this process is such that applying
such models to embodied settings remains a chal-
lenge. They have not interacted with their environ-
ment, lack observability of non-language observa-
tion modalities (e.g., images), and may not know
what is safe or possible for a particular embodiment.

Determining how to execute long-horizon behav-
iors based on high-level verbal commands is one

Task Plan:
1. Put the green block in the red bowl.
2. Put the blue block in the

Grounded
Models

Large
Language
Model

red
green
blue

yellow
orange

red
green
blue
yellow
orange

"green"

Grounded
Decoding

User

Place the blocks in
mismatched color bowls.

User

I’d like a drink and a snack.

I’ll bring a [pepsi] and an [apple].

User

Go to the green block.

1. Go to the purple door and open it.

Figure 1: Grounded Decoding solves robotic tasks by taking an instruction as input and selecting tokens that have
high probability under a Large Language Model (LLM) and a set of Grounded Models (GM). Thus, it leverages
the open-vocabulary and semantic knowledge of LLMs while being grounded in the environment and in the robot’s
capabilities. Furthermore, the whole process does not require expensive �ne-tuning of the LLM.
Correspondence to: Wenlong Huang (wenlongh@stanford.edu) and Brian Ichter (ichter@google.com).

grounded-decoding.github.io
mailto:wenlongh@stanford.edu
mailto:ichter@google.com

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

particular area of robotics where the rich semantic
knowledge in large language models can be espe-
cially useful. This problem combines elements of
semantic reasoning and planning: the robot must un-
derstand the instruction, determine the steps needed
to ful�ll it, and also determine how to sequence those
steps appropriately given its capabilities and the cur-
rent state of the environment. However, this is not a
problem that can be solved purely with semantics, as
it requires su�cient grounding to understand how
the task should be performed in context – for exam-
ple, in the example in Figure 1, the language model
alone has no way of knowing which block to pick
up because this requires knowledge of which blocks
are present, and also what manipulations the robot
is capable of performing on them. Thus, although
a language model can assign probabilities for how
likely various steps are to correspond to the desired
task semantically, the constraints of the planning
problem must also enter into the process. These
constraints could themselves be represented as prob-
abilities that mirror the token probabilities generated
by a language model, re�ecting their applicability to
the current environment rather than their semantic
likelihood. We can frame this as a problem similar to
probabilistic �ltering: decode a sequence (i.e., a task
description) that both has a high probability under
the language model and a high probability under a
grounded model that predicts how applicable this
sequence is to the current scene.

Herein, we present Grounded Decoding (GD),
a scalable, general approach to planning with LLMs
embodied domains. Grounded Decoding jointly de-
codes the token probability of an LLM and token
probabilities from token-conditioned, robotic func-
tions, such as a�ordance functions capturing the
abilities of a robot given its embodiment, safety func-
tions, or more. By guiding the LLM directly at its
output, Grounded Decoding enables a general and
�exible family of planning algorithms that combines
LLM’s strength of long-horizon and semantic rea-
soning and grounded models’ strength of local and
embodiment grounding.

Our contributions are as followed: 1) we present
a robot-centric formulation for decoding language
models to perform long-horizon robotic tasks with
token-conditioned grounded models, 2) we demon-
strate techniques for learning such grounded mod-
els, serving di�erent purposes such as a�ordances
and safety requirements, and 3) we show empirical

evidence, across three simulation and real-world do-
mains, that the proposed method performs strongly
on a wide range of tasks while also signi�cantly out-
performing prior methods in e�ciency.

2. Related Work
Guided Decoding for Language Models. Decod-
ing strategies for large language models is an active
area of research within natural language process-
ing [1, 2, 3, 4, 5]. A number of recent works have
focused on developing decoding heuristics for natu-
ral text generation [6, 7, 8, 9, 3, 10, 11, 12]. Another
line of works use external classi�ers for maximiz-
ing certain language-space utilities when decoding
language models [13, 14, 15, 16, 17, 18, 5, 19, 20, 21].
Most closely related to our work are classi�er-guided
decoding methods developed for o�ine domains,
such as image captioning [22, 23] and task-oriented
dialog [24, 25]. However, extensions to embodied do-
mains, which we investigate exclusively in this work,
remain non-trivial because grounding in embodied
domains is bounded by the abilities of the agent and
by environment state transition as the agent actively
interacts with the environment.
Embodied and Multimodal Language Models.
Training language models to understand embodi-
ment is an active area of research. Training mul-
timodal models can enable some degree of em-
bodied reasoning, such as understanding images
and videos [26, 27, 28, 29]. Directly �netuning
language models to output actions has also been
investigated [30, 31, 32]. Lastly, training down-
stream models on language model embeddings
shows promise [33, 34, 35, 36, 37, 38]. In this work,
we investigate leveraging large frozen language mod-
els for embodied applications [39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
with grounded models to provide domain-speci�c
grounding during decoding process.
Comparison to SayCan. The most closely related
work to our work is SayCan [40]. SayCan uses a
large language model and a value function to select
robotic skills among a constrained set of primitives.
This constrained set of primitives enables SayCan
to use the so-called “scoring-mode” of the LLM to
get the probability of a skill being useful to a high-
level instruction. This requirement to consider only
a �xed and enumerated set of primitives limits the
applicability of SayCan in scenarios with many possi-
ble skills, such as open vocabulary or combinatorial

2

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

2. Put the cake

Task Plan:
1. Put the peach in the brown box.
2. Put the

User

Please pack a picnic box for me.

cake

salad
red
···

0.8
0.1
0.0
0.0
···

Large
Language
Model

cake
salad
fruit
···

0.2
0.2
0.2
0.1
···

pepsi
red

cake
A
···

0.3
0.3
0.2
0.2
···

Affordance

···
Preference

···
Safety

Grounded
Models

peach

peach

···

···

Figure 2: Overview of Grounded Decoding. Given a free-form language instruction, a language model and
grounded models jointly decide the next candidate token to be decoded by combining their respective likelihood.
Language model proposes likely tokens that produce goal-directed and coherent long-horizon behaviors, while
grounded models connect them to the physical scene, through a �exible composition of multiple objective functions
from multiple modalities, such as a�ordance, preferences, and safety.

tasks. Grounded Decoding on the other hand jointly
decodes the LLM and the grounded model at the to-
ken level, allowing for expressive decoding with an
open vocabulary. Furthermore, SayCan considers
only grounding functions derived from RL-trained
value functions for a�ordance grounding functions,
while Grounded Decoding explores many types of
grounding functions to propose a broad family of
algorithms.
Task andMotionPlanning. Task and motion plan-
ning [60] seeks to solve high-level instructions via
sequencing tasks in dynamically feasible manner. Re-
search within this area generally focuses on symbolic
planning [61] or optimization-based [62] approaches.
Machine learning has increasingly been used to ac-
celerate planning and enable new domains [63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]. However,
planning constraints are often explicitly speci�ed for
TAMP methods. In contrast, we specify constraints
as (learned) probabilities, which are baked into the
decoding process and provided by domain-speci�c
grounded models.
Comparison to SayCan. The most closely related
work to our work is SayCan [40]. SayCan uses a
large language model and a value function to select
robotic skills among a constrained set of primitives.
This constrained set of primitives enables SayCan
to use the so-called “scoring-mode” of the LLM to
get the probability of a skill being useful to a high-
level instruction. This requirement to consider only
a �xed and enumerated set of primitives limits the
applicability of SayCan in scenarios with many possi-
ble skills, such as open vocabulary or combinatorial
tasks. Grounded Decoding on the other hand jointly

decodes the LLM and the grounded model at the to-
ken level, allowing for �exible and expressive decod-
ing of open vocabulary tasks. Furthermore, SayCan
considers only grounding functions derived from
RL-trained value functions for a�ordance grounding
functions, while Grounded Decoding explores many
types of grounding functions to propose a broad
family of algorithms.
Task andMotionPlanning. Task and motion plan-
ning [60] seeks to solve high-level instructions via
sequencing tasks in dynamically feasible manner. Re-
search within this area generally focuses on symbolic
planning [61] or optimization-based [62] approaches.
Machine learning has increasingly been used to ac-
celerate planning and enable new domains [63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]. However,
planning constraints are often explicitly speci�ed for
TAMP methods. In contrast, we specify constraints
as (learned) probabilities, which are baked into the
decoding process and provided by domain-speci�c
grounded models.

3. Grounded Decoding
3.1. LLMs and Grounding Models
Large Language Models. LLMs are trained to
predict the probability p(W) of a text sequence
W , represented as a sequence of tokens W =
w1∶N = (w1,… , wN). The tokens are elements of
a �xed vocabulary . Typical neural architec-
tures factorize the joint probability into p(W) =
∏N

n=1 pLLM(wn |w1∶n−1), where pLLM is predicted by
a transformer network [77]. Given pLLM, generating
a text consisting of N -many tokens, the so-called de-
coding process, can be seen as the optimization prob-

3

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

lem argmaxw1∶N ∈ ∏N
n=1 pLLM(wn |w1∶n−1), which in

practice is solved, e.g., using greedy search , beam
search, or sampling strategies. To further ensure the
LLM is solving a desired task, one typically starts
with a given text, the so-called pre�x or prompt, that
describes the task, and then the LLM completes this
task in its decoding process.
Grounding Functions. We use the concept

of grounding functions, pG(w1∶n |s), which seek to
model a probability of tokens w1∶n given (potentially
non-textual) state s ∈ . This state is intended to
capture the embodiment of the robot and the environ-
ment, which may be an image, proprioception of the
robot, or the environment state. Thus the grounding
function models probabilities relevant to the robot
embodiment and environment, such as whether the
tokens are possible for the robot to execute given
the state (a�ordances), or other values like safety,
cost, or user preferences.

3.2. Problem formulation.
Given an instruction in language � , we look at the
problem of using an LLM to decode a language plan
w1∶N , which is typically done by �nding the most
likely tokens under the probability distribution pre-
dicted by the LLM, pLLM(w1∶N |�), with � being the
pre�x. However, based on the instruction � as the
pre�x alone, the LLM can easily generate text that
is not grounded in the physical state of the envi-
ronment, rendering such plans useless in the real
world. In order to ground the language model in an
actual physical embodiment, we propose Grounded
Decoding (GD): The main idea of GD is to guide the
generation of token sequences with grounding func-
tion(s) that are conditioned on the embodiment of
the system.

Formally, let s ∈ denote a representation of the
state of the world. Then, GD attempts to generate
text that is consistent with both the instruction �
and the physical state s:

w∗
1∶N = arg max

w1∶N ,wn∈
pGD(w1∶N |s, �) (1)

To leverage the Internet-scale knowledge of LLMs,

we factorize pGD(w1∶N |s, �) as follows 1:

pGD(w1∶N |s, �) =
p(s, � |w1∶N) p(w1∶N)

p(s, �)
(2)

=
p(s|w1∶N)p(� |w1∶N)p(w1∶N)

p(s, �)
(3)

=
p(w1∶N |�)p(�)p(w1∶N |s)p(s)p(w1∶N)

p(s, �)p(w1∶N)p(w1∶N)
(4)

∝
p(w1∶N |�)
p(w1∶N)

p(w1∶N |s) (5)

∝ p(w1∶N |�)p(w1∶N |s). (6)

To decode autoregressively with the formulation, we
factorize above into token decoding:

pGD(w1∶N |s, �) ∝
N
∏
n=1

pLLM(wn |w1∶n−1, �) pG(w1∶n |s).

(7)

The �rst term, pLLM(wn |w1∶n−1, �), can be modeled as
the probability of the LLM predicting the token for
the given instruction � appended previously decoded
tokens w1∶n−1 without the state s as input. The sec-
ond term, pG(w1∶n |s), is the grounding function that
is only conditioned on the state s and judges whether
the generated text w1∶n is consistent with the physi-
cal state. The core idea behind this factorization is
that LLMs exhibit long-term planning capabilities,
while the grounding function guides the planning
of the LLM to be possible in the concrete embodied
physical world without needing to be informed or
capable of reasoning over the long-horizon instruc-
tion.

3.3. Algorithm – Grounded Decoding.
This work investigates grounded decoding exclu-
sively in the context of task planning for embodied
agents. Figure 2 visualizes a single step of the sim-
plest greedy search form of GD, and accompanying
pseudo-code can be found in Algorithm 1. Given a
high-level language instruction and history of exe-
cuted actions, GD proceeds through a process similar
to probabilistic �ltering by selecting tokens itera-
tively that have high probability under the language
model and the grounded model. After each token is
selected, it is appended to the pre�x. The process

1We make three assumptions for this derivation: 1) s and �
are marginally independent (Line 3), 2) s and � are conditionally
independent given w1∶N (Line 5), and 3) p(w1∶N) is uniform over
responses (Line 6).

4

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

continues until a token in the terminal setterm is se-
lected, which could be a period sign “.” indicating the
end of a single-step skill (e.g., pick-and-place). Then
the command w1∶i is sent to a language-conditioned
policy � (a|s, w1∶i) that executes the action a condi-
tioned on the environment state s. Crucially, this
grounding function must accept partial commands
to enable grounding during decoding.2 Additionally,
we note that GD, in its essence, provides a grounded
scoring function; thus, it can be easily extended to
any search methods such as beam search, top-k sam-
pling, etc.

Algorithm 1 Grounded Decoding (GD) w/ Greedy
Search

1: Given: state s, instruction � , terminal set term
2: Initialize: w = {}, n = 0
3: while wn ∉ term do
4: n = n + 1
5: wn = argmaxwn∈ pLLM(wn |w1∶n−1, �) pG(w1∶n |s)
6: Return: w

3.4. Techniques for Obtaining Grounding
Unlike language tasks, where a single model is ca-
pable of performing general semantic reasoning, a
singular grounded model remains an open problem.
Indeed, each domain may impose varied environ-
mental and embodiment constraints. Despite these
challenges, we present several techniques for obtain-
ing grounded models that can be leveraged in GD’s
formulation, and validate them in three domains in
Section 4.
Token-Conditioned Value Functions. Assum-

ing a robot acts with action a according to policy
� (a|s, w1∶n), that aims to maximize certain a utility
and that the utility captures a task objective, a natu-
ral choice that can provide “grounding score” is the
action-value function Q(s, a|w1∶n) as it necessarily
captures the embodiment of the robot. Additional
objectives, such as task constraints, can also be en-
capsulated in Q(s, a|w1∶n) to ensure grounding. Note
that unlike the formulation proposed in [40], w1∶n
cannot be restricted to a �xed repertoire of token
sequences. In practice, to obtain a Q(s, a|w1∶n) that
satis�es the requirements, one can train multi-task
language-conditioned agents, either through rein-

2As an example, an a�ordance ground function for a skill
“pick up object”, should emit a high probability for “pick” and
“pick up” if any object is able to be picked and collapse to only
feasible objects only once the object token is decoded.

forcement learning (Section 4.2) or supervised learn-
ing (Section 4.1).
Multimodal Foundation Models. A general

choice to ground LLMs is through using multi-
modal foundation models, such as CLIP [78] or
open-vocabulary object detectors [79, 80, 81]. Al-
though these models can connect language to other
grounded modalities (e.g., vision), they often lack the
capability for complex or long-horizon reasoning,
and they do not consider embodiment constraints.
As a result, to leverage them in the decoding pro-
cess, they need to constrained to where they are
the most applicable rather than always decoding
jointly. To this end, we use a prompt-based tech-
nique that allows LLMs to choose when to jointly
decode (Section 4.3), which we �nd to be e�ective in
most cases.3.
Rule-based Methods. Another source of

grounding may come from features x = �(w1∶n) de-
signed with expert domain knowledge, which can
then be used to map w1∶n to a “grounding score” us-
ing pamametric or non-parametric functions f (x).
Such techniques may be most applicable when in-
terpretability and enforcing hard constraints are re-
quired, such as safety-critical settings, or when data
are scarce, such as cases involving preferences of
individual users (as shown in Section 4.1).

3.5. Comparisons to Prompt-based Methods
One alternative approach for grounding is includ-
ing scene information as part of the prompt (e.g.,
object detection results [41]), which complements
the grounding method proposed in this work. How-
ever, we note that prompting is often insu�cent
for grounding, as information about the scene and
about the capabilities of the robot may not always be
succinctly described in the prompt. Such examples
include 1) in a block stacking task, a block that has
been stacked on cannot be picked, 2) in a navigation
task, to open a door, one must have a key and that
door must be reachable, and 3) in a mobile manip-
ulation domain, an object may be visible but is out
of reach of the manipulator. Therefore, Grounded
Decoding is a more general and �exible grounding
method that injects continuous probabilities during
decoding, which may even come from grounding

3Emerging multimodal language models [54, 82] provide
strong baselines, but they similarly cannot serve general-
purpose grounding functions because they are not conditioned
on embodiment, except for cases where embodiment data from
each individual domain can be used to �netune the LLM [54].

5

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

Language Model Grounded Models Combined Score

Step 1: Go to the purple door and open it
Step 2: Go to the green door and open it
Step 3: Go to the purple door and open it
Step 4: Go to the green door and open it
Step 5: Go to the red door and open it
Step 6: Go to the goal

Step 1: Pick up Y and place it on left side
Step 2: Pick up O and place it on right of Y
Step 3: DoneUser

Spell as much of
“you” as you can.

Tabletop Rearrangement
(Sim)

User

Traverse the rooms
to get to the goal.

MiniGrid 2D Maze
(Sim)

Thought: I will bring you the [pepsi] and
the [apple]
Plan: Step 1: Find an apple
Step 2: Pick up the apple
Step 3: Bring it to you
Step 4: Put it down
…

User

Bring me a soda that is
not coke, and a fruit.

Kitchen Mobile Robot
(Real)

Language score, grounding score, tokens
[(-2.2144471089350395, 13.634880781173706, 'pepsi'),
 (-0.1931666703881, 0.0, 'grapefruit soda'),
 (-3.539740621266, 2.5450411438941956, 'lime soda'),
 (-14.8108290220984, 2.7466341853141785, 'grapefruit'),
 (-13.0752280220984, 0.0, 'grapefruit Soda')]

Figure 3: Example rollouts and likelihood of representative tokens under Grounded Decoding objective in three
distinct domains: simulated tabletop rearrangement (top), Minigrid 2D Maze (middle), and real-world kitchen mobile
manipulation (bottom). Each domain uses di�erent prompts, grounded models, and low-level primitives. The GD
formulation is shared across the domains, decoding a pre-trained langauge model with respect to domain-speci�c
grounded models to decompose a open-ended instruction into actionable steps.

functions from other modalities (e.g., vision).

4. Experiments
4.1. Long-Horizon Tabletop Manipulation
Herein we experiment with a simulated tabletop ma-
nipulation environment based on RAVENS [83]. We
create a custom set of 20 tasks, with 10 seen tasks
and 10 unseen tasks. Seen tasks are used for training
(for supervised baseline) or for few-shot prompting.
They are grouped by following categories. Detailed
breakdown can be found in Appendix A.2.

i. Letters: Rearranging alphabetical letters (“sort
the letters in alphabetical order”).

ii. Blocks & Bowls: Rearranging or combining
blocks and bowls (“put blocks in matching bowls”).

iii. Box Packing: Sorting food items and utensils
into boxes in accordance with safety constraints and
user preferences (“Can you pack the picnic box for
me?”).

Given only high-level language instructions
and top-down visual observation of the environ-
ment, Grounded Decoding decodes a sequence of
text tokens representing the step command to
be executed. Note that because GD generated
grounded free-form actions, it does not require
each step to strictly map to a repertoire of skill as
in [39, 40]. After a complete command is generated,

it is executed via a pre-trained multi-task language-
conditioned CLIPort [84]. An example rollout is
shown in Figure 4.To demonstrate the techniques
proposed in Section 3.4 to obtain grounding func-
tions, we study the composition of following ground-
ing functions (overall grounding score is calculated
as pG = ∏n

i=1 pi) depending on the task categories.
Refer to the Appendix A.2 for details.
A�ordance Grounding Function (AF). As the

primitive policy CLIPort [84] already acts as an
action-value function over the pixel space, we di-
rectly leverage its predictions for a�ordance ground-
ing. In particular, given scene image s and partially-
decoded instruction w1∶n, CLIPort predicts unnor-
malized logits over the pixel space upick, uplace ∈
ℝ480×640, respectively for the pick location and the
place location. Therefore, for any given s and w1∶n,
we can calculate the a�ordance as pAF(w1∶n |s) =
max(x,y)∈480×640 (upick(x, y) + uplace(x, y)).
Safety Grounding Function (S). To strictly en-

force hard constraints such as safety requirements,
we adopt the rule-based method proposed in Sec-
tion 3.4. In particular, the features x are indicator
functions denoting whether knives and red boxes
which we use as hazardous objects are involved in
an action, i.e., x = I[“red” or “knife” in w1∶n]. We
then use constant mappings to convert the features

6

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

Step 1: Pick up the yellow block and place it on the purple block. Step 2: Pick up the red block and place it on the yellow block.

User

Stack all the blocks.

Language Model Grounded Model (Affordance) Combined Score

Figure 4: Example decision-making with GD, where key decoded tokens are shown (yellow, purple, red, yellow). For
each of the key token position, we show the top 10 candidates with their likelihoods under the language model,
groundedmodel, and both. Combined scores are normalized to the maximum for visual clarity; others are normalized
to the sum for showing their relative con�dence. While only greedy search is illustrated for simplicity, alternative
search methods may achieve better results, as shown in Section 4.

pS(w1∶n |s) = �
Z x +

1
Z (1 − x) to scores of 0 or 1, where

Z is the normalizing term and � ≈ 0 is a small value
for ensuring the joint probability does not collapse
to 0.
Preference Grounding Function (P). We simi-

larly use rule-based methods for preference ground-
ing, as data of individual users may be scarce to
learn a separate model. In particular, we choose two
random objects (o1, o2) as the preferred objects, i.e.,
x = I[o1 or o2 in w1∶n]. Note that unlike safety func-
tions, preferences often come in the form of “soft
requirement”. Therefore, the preference grounding
function is implemented as pP(w1∶n |s) = �

Z x+
�
Z (1−x),

where we choose � = 0.5 and � = 0.1 for our experi-
ments.
Baselines. We study two variants of GD using

beam search and greedy search. We also compare
to "No Grounding" baseline that decodes only ac-
cording to language model likelihood. Furthermore,
we compare to solitary method CLIPort [84] that
directly take in the high-level language instructions
without a planner. We consider two variants of
CLIPort: 1) "Short" that is trained with only single-
step pick-and-place commands, and 2) "Long" that
is trained on high-level instructions from the 10
training tasks. For more details, please refer to Ap-
pendix A.2.
Analysis. Results grouped by each task category

are shown in Table 14. Please refer to the Appendix
for detailed breakdown. Each method is evaluated

4Box Packing tasks are seen during training, but safety and
preference requirements are only enforced during evaluation.

CLIPort +LLM +GD

Short Long Ungrounded Greedy Beam

Seen Tasks
Letters 7% 40% 20% 43% 57%
Blocks & Bowls 2% 62% 35% 60% 77%
Box Packing* 15% 28% 11% 79 % 78%

Unseen Tasks
Letters 6% 10% 19% 37% 41%
Blocks & Bowls 6% 10% 28% 44% 50%

Table 1: Average success rate for each tabletop task cat-
egory. *Box Packing tasks are seen during training, but
safety and preference requirements are only enforced
during evaluation.

on 20 episodes for each task within each task cat-
egory. Supervised methods, such as CLIPort, are
found to perform poorly on unseen tasks. Methods
that leverage language model planner show better
generalization to unseen tasks but fall short due to
lack of grounding. Grounded Decoding achieves
the best results by enabling the LLM to plan actions
using grounded information and is further improved
with beam search.

4.2. 2D Maze
We further evaluate the long-horizon reasoning of
Grounded Decoding for 2D maze-solving on Mini-
grid [85]. The agent receives a top-down view of the
environment along with a natural language instruc-
tion. More details can be found in Appendix A.3.
The tasks are grouped in three categories:

7

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

i. Easy: Simple tasks where the horizon is short
(10-30 steps) and fully described by the textual in-
struction, e.g. OpenDoors and PutNext.

ii. Medium: Short and long-horizon tasks (up to
80 steps) with step-by-step textual instructions, e.g.
LockedRoom.

iii. Hard: Complex, long-horizon instructions
(over 100 steps) with ambiguous instructions that
necessitate multi-step reasoning and e�cient explo-
ration, e.g. MultiRoom and BlockedUnlock.
A�ordance Grounding Function. Follow-

ing the recipe from Section 3.3, we train token-
conditioned a�ordance function to be used in GD.
The di�erence is that the grounding function here
is the value function from the goal-conditioned pol-
icy that is trained with PPO [86] instead of from
demonstrations as in CLIPort [84]. The policy per-
forms short-horizon skills such as “Go to red key” or
“Open the door” and are conditioned on CLIP embed-
dings of the skill and an image of the scene. Accord-
ingly, the goal-conditioned value function evaluates
the feasibility given the current observation and the
(partially) decoded skill.

Baselines. We compare the two variants of GD –
with greedy and beam search – with 1) a solitary
PPO policy [86], 2) a hierarchical RL algorithm which
plans over the low-level skills, and 3) a hierarchical
method that uses an ungrounded language model
for planning [39].

+Skills +LLM +GD

PPO HRL Ungrounded Greedy Beam

Easy 28% 68% 96% 100% 100%
Medium 13% 48% 87% 93% 97%
Hard 6% 31% 54% 78% 88%

Table 2: 2D Maze success rates.

Analysis. Table 2 reports the success rate, aver-
aged across 100 episodes of randomly initialized en-
vironments. The “�at” RL agent performs poorly in
all but the simplest environments, owing to di�cul-
ties with understanding the high-level instruction
and reasoning over long horizons (often over 100
steps). Planning over low-level skills using hierar-
chical RL [87] improves this performance, since the
high-level decision-making problem is greatly sim-
pli�ed. However, the high-level RL agent still needs
to reason over low-level (textual) skills by under-
standing their underlying capabilities and stitching

them together. Using the planning capabilities of
large language models to reason over textual skills
signi�cantly boosts this performance [39], since the
language model can inherit the strong reasoning ca-
pabilities from its training data. This tends to be
insu�cient in challenging environments, however,
since the number of potentially viable skills may be
very large and the LLM has no information about the
robot’s observations. GD can leverage the learned af-
fordance function (in this case, the goal-conditioned
value function) to inform the language model’s plans,
enabling successful long-horizon reasoning. We fur-
ther �nd that beam search improves performance
modestly, particularly in long-horizon tasks.

4.3. Mobile Manipulation in a Physical
Kitchen

Our last environment is a kitchen robot in the real
world, and we follow the same implementations of
the mobile manipulation platform and skills in Say-
Can [40]. We perform instruction following tasks,
as in [40]. An example task is “Bring an apple", for
which the robot needs to plan and execute a sequence
of “1. Find an apple, 2. Pick up the apple, 3. Bring
it to you. 4. Put it down, 5. Done". We split the
tasks into two categories. Unambiguous means the
instruction explicitly contains the object of interest,
and Ambiguous means the instruction does not con-
tain the object name. For example, when human
asks “bring me the fruit”, the robot needs to �rst
determine available fruits. We assume all necessary
objects are in the �eld of view. More details can be
found in Appendix A.4.
Grounded Decoding with Chain-of-thought.

We demonstrate using multimodal foundation mod-
els for Grounded Decoding, as proposed in Sec-
tion 3.4. In particular, we use open-vocabulary object
detector owl-vit [81]. Note that because these o�-
the-shelf models are not trained on robot domain
data, we �nd that it works best by constraining their
in�uence on decoding. We achieve this by making a
slight modi�cation to the SayCan algorithm [40]: be-
fore generating action plans, we prompt the LLM to
generate visually-grounded chain-of-thought [88] by
giving LLM the option of when to enable grounded
decoding and disable grounded decoding, as visual-
ized in Fig. 5. Speci�cally, LLMs can be prompted to
generate a left bracket to start decoding jointly with
grounded models and a right bracket to revert to
ungrounded decoding. After chain-of-thought, we

8

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

use SayCan scoring mode for decoding the action
plans.

GD (ours) SayCan

Tasks Planning Execution Planning Execution

Unambiguous 85% 57% 85% 57%
Ambiguous 58% 44% 33% 25%

Table 3: Kitchen task planning and execution success.

Analysis. Table 3 shows that GD recovers similar
performance on Unambiguous tasks, and gain 25%
in planning performance on Ambiguous tasks. This
shows that GD with multimodal foundation mod-
els can e�ectively use visually-grounded chain-of-
thought to disambiguate abstract tasks.

Robot: I am a robot that can bring objects to you.
Human: I want a soda that is not coke, and a fruit.
Robot thought: I will find the [pepsi] and the [apple]
Robot plan: 1. Find an apple
2. Pick up the apple
3. Bring it to you
4. ...

grapefruit
grapefruit Soda
grapefruit soda
lime soda

sponge
banana

Ungrounded decoding
Grounded decoding
SayCan scoring mode

1.Find an apple 2.Pick up the apple 5.Find a pepsi 6.Pick up the pepsi 8.Put it down

… …

Figure 5: Example prompt and rollout in real-world
kitchen environment.

5. Analysis
5.1. Comparison to SayCan
In this section, we directly compare GD to Say-
Can [40], which is related to our method in that both
combine language model knowledge and grounded
model knowledge (discussed in more detail in Sec-
tion 2). However, SayCan uses the language model
to score all pre-speci�ed options, rendering it ine�-
cient at dealing with large or combinatorial action
spaces. In contrast, GD computation considers all
possible language token in the autoregressive de-
coding process, which is independent of the size of
the action space. Results shown in Table 4 demon-
strate that GD is two orders of magnitude more ef-
�cient on our tasks, with comparable performance.
Furthermore, by decoding at the most basic func-
tioning unit of language, GD’s formulation allows

open-vocabulary grounding beyond just a�ordances,
e.g. safety, preferences, and multimodal embeddings
such as CLIP.

GD (Greedy) GD (Beam) SayCan

Success Rate 50% 60% 64%
Token Count 1x 4.3x 113.7x

Table 4: By avoiding full enumeration of the skills, GD
is more e�cient than SayCan while staying performant.

5.2. Breakdown of Failure Reasons
Because all hierarchical approaches share an imper-
fect low-level policy for step execution, the results
reported in Table 1 are compounded with both plan-
ning failures and low-level policy failure. In Figure 6,
we provide failure breakdown analysis for Grounded
Decoding and associated baselines. Note that the
CLIPort baselines are solitary methods that do not
use a planner, so the failures are solely composed
of policy failures. As shown in Figure 6, while all
planning-based methods use the same underlying
low-level policy, Grounded Decoding signi�cantly
reduces planning failure by being able to incorporate
grounded scene information into the decoding pro-
cess. Moreover, we observe that despite the shared
a�ordance function across beam and greedy search,
the beam search variant performs stronger by be-
ing aware of the full-length single-step instructions
during decoding.

GD (Beam)

GD (Greedy)

No Grounding

CLIPort (long)

CLIPort (short)

0% 25% 50% 75% 100% 125%

Policy Failure Planner Failure No Failure

Figure 6: Visualization of actions colored by a�ordance
values in di�erent scenes. Every dot represents a possible
action in the tabletop domain, where the majority of the
actions are infeasible. We show how grounded models
can identify the feasible actions for speci�c scenes. No-
tably, these actions are not always clustered in language
space, requiring the grounding function to determine
what action to perform.

9

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

5.3. Grounded Action Manifold
A central goal of this work is to investigate the in-
tegration of grounded information into language
model decoding to output instructions actionable by
a policy. To investigate this, we use a t-SNE [89] plot
to illustrate the extent to which grounded models
help narrow down the search space for language
models. Speci�cally, we �rst enumerate all mean-
ingful instructions in the tabletop domain, such as
“pick x and place it on y,” which are represented as
dots in the �gure. We then compute the a�ordance
values with respect to four di�erent scenes, where
each color represents one scene. Finally, we group
the dots using t-SNE and BERT embeddings [90].
Figure 7 shows that grounded models can e�ectively
identify achievable skills to produce an actionable
manifold within the language space and that this
grounding is required, as language alone does not
perfectly group actionable skills. It is worth noting
that while we provide manual enumeration of all pos-
sible skills for practical analysis, the full language
space is much larger. This highlights the even more
pronounced narrowing of the search in the language
space.

Figure 7: Visualization of actions colored by a�ordance
values in di�erent scenes. Every dot represents a possible
action in the tabletop domain, where the majority of the
actions are infeasible. We show how grounded models
can identify the feasible actions for speci�c scenes. No-
tably, these actions are not always clustered in language
space, requiring the grounding function to determine
what action to perform.

6. Conclusions, Limitations, & Future
We presented Grounded Decoding (GD), an approach
for leveraging the knowledge and capabilities of
large language models in embodied settings through
grounding functions, which model the probabilities
of tokens given an embodiment. GD resembles prob-
abilistic �ltering, by decoding tokens that have high
probabilities under the language model and under
grounded model(s). By guiding the LLM’s decod-
ing directly at its output, GD is a general, �exible,

and expressive approach to embodied tasks. This
is demonstrated on three embodied domains, show-
ing GD is capable of solving complex, long-horizon
tasks.

Though quite general and �exible, GD has a few
limitations. First, although we present several tech-
niques for obtaining grounding functions in di�er-
ent domains, it remains a question whether a capa-
ble and general grounding function can be obtained.
We hope that recent progress in large-scale robotics
models (e.g. [91] and [92]) can remove this bottle-
neck, and note that the �exibility of GD allows such
progress to be straightforwardly leveraged. Second,
prompt engineering is often required to steer LLMs
to the desired action space (e.g., likely action verbs,
likely present objects). Finally, while not requiring
additional training, the joint decoding may be lim-
iting compared to a single model capable of both
grounding and language reasoning [29, 26, 54].

This work presented a family of algorithms for
grounding LLMs in embodiment, for which there are
many avenues for future work. The �exibility of the
approach enables many other grounding functions
and ways to integrate grounding. Furthermore, the
development and integration of a foundation model
for grounding would improve performance signi�-
cantly. Finally, though GD’s probabilistic �ltering-
based approach is quite general, fusing grounding
information to the language model after each to-
ken decoding may be limiting and future works can
investigate how such grounding can be elegantly
integrated during decoding.

Acknowledgments
The authors would like to acknowledge Pierre Ser-
manet, Carolina Parada, Jie Tan, Yevgen Chebotar,
Vincent Vanhoucke, and Dorsa Sadigh for their feed-
back and contributions. This work is supported in
part by OpenAI academic access program, granted
to Wenlong Huang.

References
[1] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence

to sequence learning with neural networks,”
Advances in neural information processing sys-
tems, vol. 27, 2014.

[2] Y. Wu, M. Schuster, Z. Chen, Q. V. Le,
M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, et al., “Google’s neural ma-
chine translation system: Bridging the gap be-

10

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

tween human and machine translation,” arXiv
preprint arXiv:1609.08144, 2016.

[3] A. Holtzman, J. Buys, L. Du, M. Forbes, and
Y. Choi, “The curious case of neural text degen-
eration,” arXiv preprint arXiv:1904.09751, 2019.

[4] S. Welleck, I. Kulikov, J. Kim, R. Y. Pang, and
K. Cho, “Consistency of a recurrent language
model with respect to incomplete decoding,”
arXiv preprint arXiv:2002.02492, 2020.

[5] R. Leblond, J.-B. Alayrac, L. Sifre, M. Pislar,
J.-B. Lespiau, I. Antonoglou, K. Simonyan,
and O. Vinyals, “Machine translation de-
coding beyond beam search,” arXiv preprint
arXiv:2104.05336, 2021.

[6] C. Meister, T. Vieira, and R. Cotterell, “If beam
search is the answer, what was the question?,”
arXiv preprint arXiv:2010.02650, 2020.

[7] J. Kasai, K. Sakaguchi, R. L. Bras, D. Radev,
Y. Choi, and N. A. Smith, “Beam decod-
ing with controlled patience,” arXiv preprint
arXiv:2204.05424, 2022.

[8] C. Meister, T. Pimentel, G. Wiher, and R. Cot-
terell, “Typical decoding for natural language
generation,” arXiv preprint arXiv:2202.00666,
2022.

[9] A. Fan, M. Lewis, and Y. Dauphin, “Hierar-
chical neural story generation,” arXiv preprint
arXiv:1805.04833, 2018.

[10] S. Basu, G. S. Ramachandran, N. S. Keskar, and
L. R. Varshney, “Mirostat: A neural text decod-
ing algorithm that directly controls perplexity,”
arXiv preprint arXiv:2007.14966, 2020.

[11] N. S. Keskar, B. McCann, L. R. Varshney,
C. Xiong, and R. Socher, “Ctrl: A conditional
transformer language model for controllable
generation,” arXiv preprint arXiv:1909.05858,
2019.

[12] T. Scialom, P.-A. Dray, S. Lamprier, B. Pi-
wowarski, and J. Staiano, “Discriminative ad-
versarial search for abstractive summarization,”
in International Conference on Machine Learn-
ing, pp. 8555–8564, PMLR, 2020.

[13] C. Snell, I. Kostrikov, Y. Su, M. Yang, and
S. Levine, “O�ine rl for natural language gener-
ation with implicit language q learning,” arXiv
preprint arXiv:2206.11871, 2022.

[14] K. Yang and D. Klein, “Fudge: Controlled text
generation with future discriminators,” arXiv
preprint arXiv:2104.05218, 2021.

[15] A. Holtzman, J. Buys, M. Forbes, A. Bosse-
lut, D. Golub, and Y. Choi, “Learning to write
with cooperative discriminators,” arXiv preprint
arXiv:1805.06087, 2018.

[16] J. Li, W. Monroe, and D. Jurafsky, “Learning
to decode for future success,” arXiv preprint
arXiv:1701.06549, 2017.

[17] B. Krause, A. D. Gotmare, B. McCann,
N. S. Keskar, S. Joty, R. Socher, and N. F.
Rajani, “Gedi: Generative discriminator
guided sequence generation,” arXiv preprint
arXiv:2009.06367, 2020.

[18] M. Ghazvininejad, X. Shi, J. Priyadarshi, and
K. Knight, “Hafez: an interactive poetry genera-
tion system,” in Proceedings of ACL 2017, System
Demonstrations, pp. 43–48, 2017.

[19] A. Baheti, A. Ritter, J. Li, and B. Dolan, “Gen-
erating more interesting responses in neural
conversation models with distributional con-
straints,” arXiv preprint arXiv:1809.01215, 2018.

[20] S. Dathathri, A. Madotto, J. Lan, J. Hung,
E. Frank, P. Molino, J. Yosinski, and R. Liu, “Plug
and play language models: A simple approach
to controlled text generation,” arXiv preprint
arXiv:1912.02164, 2019.

[21] T. Hartvigsen, S. Gabriel, H. Palangi, M. Sap,
D. Ray, and E. Kamar, “Toxigen: A large-scale
machine-generated dataset for adversarial and
implicit hate speech detection,” arXiv preprint
arXiv:2203.09509, 2022.

[22] Y. Tewel, Y. Shalev, I. Schwartz, and L. Wolf,
“Zero-shot image-to-text generation for
visual-semantic arithmetic,” arXiv preprint
arXiv:2111.14447, 2021.

[23] Y. Su, T. Lan, Y. Liu, F. Liu, D. Yogatama,
Y. Wang, L. Kong, and N. Collier, “Language
models can see: plugging visual controls in text

11

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

generation,” arXiv preprint arXiv:2205.02655,
2022.

[24] C. Snell, S. Yang, J. Fu, Y. Su, and S. Levine,
“Context-aware language modeling for goal-
oriented dialogue systems,” arXiv preprint
arXiv:2204.10198, 2022.

[25] S. Verma, J. Fu, M. Yang, and S. Levine, “Chai:
A chatbot ai for task-oriented dialogue with
o�ine reinforcement learning,” arXiv preprint
arXiv:2204.08426, 2022.

[26] X. Chen, X. Wang, S. Changpinyo, A. Pier-
giovanni, P. Padlewski, D. Salz, S. Goodman,
A. Grycner, B. Mustafa, L. Beyer, et al., “Pali:
A jointly-scaled multilingual language-image
model,” arXiv preprint arXiv:2209.06794, 2022.

[27] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and
K.-W. Chang, “Visualbert: A simple and perfor-
mant baseline for vision and language,” arXiv
preprint arXiv:1908.03557, 2019.

[28] C. Sun, A. Myers, C. Vondrick, K. Murphy, and
C. Schmid, “Videobert: A joint model for video
and language representation learning,” in Pro-
ceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2019.

[29] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech,
I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Mil-
lican, M. Reynolds, et al., “Flamingo: a visual
language model for few-shot learning,” arXiv
preprint arXiv:2204.14198, 2022.

[30] A. Suglia, Q. Gao, J. Thomason, G. That-
tai, and G. Sukhatme, “Embodied bert: A
transformer model for embodied, language-
guided visual task completion,” arXiv preprint
arXiv:2108.04927, 2021.

[31] A. Pashevich, C. Schmid, and C. Sun, “Episodic
transformer for vision-and-language naviga-
tion,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2021.

[32] P. Sharma, A. Torralba, and J. Andreas, “Skill
induction and planning with latent language,”
arXiv preprint arXiv:2110.01517, 2021.

[33] C. Lynch and P. Sermanet, “Grounding lan-
guage in play,” arXiv preprint arXiv:2005.07648,
2020.

[34] S. Nair, E. Mitchell, K. Chen, B. Ichter,
S. Savarese, and C. Finn, “Learning language-
conditioned robot behavior from o�ine data
and crowd-sourced annotation,” in Conference
on Robot Learning, pp. 1303–1315, PMLR, 2021.

[35] F. Hill, S. Mokra, N. Wong, and T. Harley, “Hu-
man instruction-following with deep reinforce-
ment learning via transfer-learning from text,”
arXiv preprint arXiv:2005.09382, 2020.

[36] R. Zellers, X. Lu, J. Hessel, Y. Yu, J. S. Park,
J. Cao, A. Farhadi, and Y. Choi, “Merlot: Mul-
timodal neural script knowledge models,” Ad-
vances in Neural Information Processing Systems,
2021.

[37] M. Reid, Y. Yamada, and S. S. Gu, “Can
wikipedia help o�ine reinforcement learning,”
arXiv preprint arXiv:2201.12122, 2022.

[38] S. Li, X. Puig, Y. Du, C. Wang, E. Akyurek,
A. Torralba, J. Andreas, and I. Mordatch,
“Pre-trained language models for inter-
active decision-making,” arXiv preprint
arXiv:2202.01771, 2022.

[39] W. Huang, P. Abbeel, D. Pathak, and I. Mor-
datch, “Language models as zero-shot planners:
Extracting actionable knowledge for embodied
agents,” in International Conference on Machine
Learning, PMLR, 2022.

[40] M. Ahn, A. Brohan, N. Brown, Y. Chebotar,
O. Cortes, B. David, C. Finn, K. Gopalakrishnan,
K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz,
B. Ichter, A. Irpan, E. Jang, R. J. Ruano, K. Jef-
frey, S. Jesmonth, N. Joshi, R. Julian, D. Kalash-
nikov, Y. Kuang, K.-H. Lee, S. Levine, Y. Lu,
L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao,
J. Rettinghouse, D. Reyes, P. Sermanet, N. Siev-
ers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia,
T. Xiao, P. Xu, S. Xu, and M. Yan, “Do as i can
and not as i say: Grounding language in robotic
a�ordances,” in arXiv preprint arXiv:2204.01691,
2022.

[41] A. Zeng, A. Wong, S. Welker, K. Choromanski,
F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani,
J. Lee, V. Vanhoucke, et al., “Socratic models:
Composing zero-shot multimodal reasoning
with language,” arXiv preprint arXiv:2204.00598,
2022.

12

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

[42] B. Chen, F. Xia, B. Ichter, K. Rao, K. Gopalakr-
ishnan, M. S. Ryoo, A. Stone, and D. Kappler,
“Open-vocabulary queryable scene representa-
tions for real world planning,” arXiv preprint
arXiv:2209.09874, 2022.

[43] D. Shah, B. Osinski, B. Ichter, and S. Levine,
“Lm-nav: Robotic navigation with large pre-
trained models of language, vision, and action,”
arXiv preprint arXiv:2207.04429, 2022.

[44] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang,
P. Florence, A. Zeng, J. Tompson, I. Mor-
datch, Y. Chebotar, P. Sermanet, N. Brown,
T. Jackson, L. Luu, S. Levine, K. Hausman, and
B. Ichter, “Inner monologue: Embodied reason-
ing through planning with language models,”
in arXiv preprint arXiv:2207.05608, 2022.

[45] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman,
B. Ichter, P. Florence, and A. Zeng, “Code as
policies: Language model programs for em-
bodied control,” arXiv preprint arXiv:2209.07753,
2022.

[46] I. Singh, V. Blukis, A. Mousavian, A. Goyal,
D. Xu, J. Tremblay, D. Fox, J. Thomason, and
A. Garg, “Progprompt: Generating situated
robot task plans using large language models,”
arXiv preprint arXiv:2209.11302, 2022.

[47] O. Mees, J. Borja-Diaz, and W. Burgard,
“Grounding language with visual a�ordances
over unstructured data,” arXiv preprint
arXiv:2210.01911, 2022.

[48] C. Huang, O. Mees, A. Zeng, and W. Burgard,
“Visual language maps for robot navigation,”
arXiv preprint arXiv:2210.05714, 2022.

[49] S. S. Raman, V. Cohen, E. Rosen, I. Idrees,
D. Paulius, and S. Tellex, “Planning with large
language models via corrective re-prompting,”
arXiv preprint arXiv:2211.09935, 2022.

[50] C. H. Song, J. Wu, C. Washington, B. M. Sadler,
W.-L. Chao, and Y. Su, “Llm-planner: Few-
shot grounded planning for embodied agents
with large language models,” arXiv preprint
arXiv:2212.04088, 2022.

[51] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang,
J. Biswas, and P. Stone, “Llm+ p: Empowering
large language models with optimal planning

pro�ciency,” arXiv preprint arXiv:2304.11477,
2023.

[52] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and
J. Bohg, “Text2motion: From natural language
instructions to feasible plans,” arXiv preprint
arXiv:2303.12153, 2023.

[53] Y. Ding, X. Zhang, C. Paxton, and S. Zhang,
“Task and motion planning with large lan-
guage models for object rearrangement,” arXiv
preprint arXiv:2303.06247, 2023.

[54] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch,
A. Chowdhery, B. Ichter, A. Wahid, J. Tomp-
son, Q. Vuong, T. Yu, et al., “Palm-e: An embod-
ied multimodal language model,” arXiv preprint
arXiv:2303.03378, 2023.

[55] S. Vemprala, R. Bonatti, A. Bucker, and
A. Kapoor, “Chatgpt for robotics: Design prin-
ciples and model abilities,” 2023, 2023.

[56] H. Yuan, C. Zhang, H. Wang, F. Xie,
P. Cai, H. Dong, and Z. Lu, “Plan4mc:
Skill reinforcement learning and planning for
open-world minecraft tasks,” arXiv preprint
arXiv:2303.16563, 2023.

[57] Y. Xie, C. Yu, T. Zhu, J. Bai, Z. Gong, and H. Soh,
“Translating natural language to planning goals
with large-language models,” arXiv preprint
arXiv:2302.05128, 2023.

[58] Y. Lu, P. Lu, Z. Chen, W. Zhu, X. E. Wang, and
W. Y. Wang, “Multimodal procedural planning
via dual text-image prompting,” arXiv preprint
arXiv:2305.01795, 2023.

[59] D. Patel, H. Eghbalzadeh, N. Kamra, M. L. Iuz-
zolino, U. Jain, and R. Desai, “Pretrained lan-
guage models as visual planners for human as-
sistance,” arXiv preprint arXiv:2304.09179, 2023.

[60] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchi-
cal planning in the now,” in Workshops at the
Twenty-Fourth AAAI Conference on Arti�cial
Intelligence, 2010.

[61] R. E. Fikes and N. J. Nilsson, “Strips: A new
approach to the application of theorem proving
to problem solving,” Arti�cial intelligence, 1971.

13

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

[62] M. Toussaint, “Logic-geometric programming:
An optimization-based approach to combined
task and motion planning,” in Twenty-Fourth
International Joint Conference on Arti�cial In-
telligence, 2015.

[63] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-
Fei, and S. Savarese, “Neural task program-
ming: Learning to generalize across hierarchi-
cal tasks,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), 2018.

[64] N. Savinov, A. Dosovitskiy, and V. Koltun,
“Semi-parametric topological memory for navi-
gation,” arXiv preprint arXiv:1803.00653, 2018.

[65] T. Silver, R. Chitnis, N. Kumar, W. McClinton,
T. Lozano-Perez, L. P. Kaelbling, and J. Tenen-
baum, “Inventing relational state and action ab-
stractions for e�ective and e�cient bilevel plan-
ning,” arXiv preprint arXiv:2203.09634, 2022.

[66] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P.
Kaelbling, and D. Fox, “Online replanning in
belief space for partially observable task and
motion problems,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA),
2020.

[67] B. Eysenbach, R. R. Salakhutdinov, and
S. Levine, “Search on the replay bu�er: Bridg-
ing planning and reinforcement learning,” Ad-
vances in Neural Information Processing Systems,
2019.

[68] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg,
L. Fei-Fei, S. Savarese, and J. C. Niebles, “Neural
task graphs: Generalizing to unseen tasks from
a single video demonstration,” in Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019.

[69] D. Xu, A. Mandlekar, R. Martín-Martín, Y. Zhu,
S. Savarese, and L. Fei-Fei, “Deep a�ordance
foresight: Planning through what can be done
in the future,” in 2021 IEEE International Con-
ference on Robotics and Automation (ICRA),
pp. 6206–6213, IEEE, 2021.

[70] B. Ichter, P. Sermanet, and C. Lynch, “Broadly-
exploring, local-policy trees for long-horizon
task planning,” Conference on Robot Learning
(CoRL), 2021.

[71] C. Agia, T. Migimatsu, J. Wu, and J. Bohg,
“Taps: Sequencing task-agnostic policies,” arXiv
preprint arXiv:2210.12250, 2022.

[72] D. Shah, P. Xu, Y. Lu, T. Xiao, A. Toshev,
S. Levine, and B. Ichter, “Value function spaces:
Skill-centric state abstractions for long-horizon
reasoning,” ICLR, 2022.

[73] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin,
and S. Levine, “Visual reinforcement learning
with imagined goals,” in Advances in Neural
Information Processing Systems, 2018.

[74] B. Wu, S. Nair, L. Fei-Fei, and C. Finn, “Example-
driven model-based reinforcement learning for
solving long-horizon visuomotor tasks,” arXiv
preprint arXiv:2109.10312, 2021.

[75] F. Xia, C. Li, R. Martín-Martín, O. Litany, A. To-
shev, and S. Savarese, “Relmogen: Integrating
motion generation in reinforcement learning
for mobile manipulation,” in 2021 IEEE Interna-
tional Conference on Robotics and Automation
(ICRA), 2021.

[76] D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint,
“Deep visual heuristics: Learning feasibility of
mixed-integer programs for manipulation plan-
ning,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), pp. 9563–9569,
IEEE, 2020.

[77] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30,
2017.

[78] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh,
G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and
I. Sutskever, “Learning transferable visual
models from natural language supervision,” in
Proceedings of the 38th International Conference
on Machine Learning (M. Meila and T. Zhang,
eds.), vol. 139 of Proceedings of Machine
Learning Research, pp. 8748–8763, PMLR,
18–24 Jul 2021.

[79] X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui, “Open-
vocabulary object detection via vision and lan-
guage knowledge distillation,” arXiv preprint
arXiv:2104.13921, 2021.

14

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

[80] A. Kamath, M. Singh, Y. LeCun, G. Synnaeve,
I. Misra, and N. Carion, “Mdetr-modulated de-
tection for end-to-end multi-modal understand-
ing,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 1780–
1790, 2021.

[81] M. Minderer, A. Gritsenko, A. Stone, M. Neu-
mann, D. Weissenborn, A. Dosovitskiy, A. Ma-
hendran, A. Arnab, M. Dehghani, Z. Shen,
et al., “Simple open-vocabulary object detec-
tion with vision transformers,” arXiv preprint
arXiv:2205.06230, 2022.

[82] OpenAI, “Gpt-4 technical report,” arXiv, 2023.

[83] A. Zeng, P. Florence, J. Tompson, S. Welker,
J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, and J. Lee, “Trans-
porter networks: Rearranging the visual world
for robotic manipulation,” Conference on Robot
Learning (CoRL), 2020.

[84] M. Shridhar, L. Manuelli, and D. Fox, “Cli-
port: What and where pathways for robotic
manipulation,” in Conference on Robot Learning,
pp. 894–906, PMLR, 2022.

[85] M. Chevalier-Boisvert, L. Willems, and S. Pal,
“Minimalistic gridworld environment for
openai gym.” https://github.com/
maximecb/gym-minigrid, 2018.

[86] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
and O. Klimov, “Proximal policy optimization
algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[87] A. G. Barto and S. Mahadevan, “Recent ad-
vances in hierarchical reinforcement learn-
ing,” Discrete Event Dynamic Systems, vol. 13,
p. 41–77, jan 2003.

[88] J. Wei, X. Wang, D. Schuurmans, M. Bosma,
E. Chi, Q. Le, and D. Zhou, “Chain of thought
prompting elicits reasoning in large language
models,” arXiv preprint arXiv:2201.11903, 2022.

[89] L. Van der Maaten and G. Hinton, “Visualizing
data using t-sne.,” Journal of machine learning
research, vol. 9, no. 11, 2008.

[90] J. Devlin, M.-W. Chang, K. Lee, and
K. Toutanova, “Bert: Pre-training of deep

bidirectional transformers for language un-
derstanding,” arXiv preprint arXiv:1810.04805,
2018.

[91] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar,
J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al., “Rt-1: Robotics
transformer for real-world control at scale,”
arXiv preprint arXiv:2212.06817, 2022.

[92] S. Reed, K. Zolna, E. Parisotto, S. G. Col-
menarejo, A. Novikov, G. Barth-Maron,
M. Gimenez, Y. Sulsky, J. Kay, J. T. Springen-
berg, et al., “A generalist agent,” arXiv preprint
arXiv:2205.06175, 2022.

[93] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L.
Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al., “Training language mod-
els to follow instructions with human feedback,”
arXiv preprint arXiv:2203.02155, 2022.

[94] A. Chowdhery, S. Narang, J. Devlin, M. Bosma,
G. Mishra, A. Roberts, P. Barham, H. W. Chung,
C. Sutton, S. Gehrmann, et al., “Palm: Scal-
ing language modeling with pathways,” arXiv
preprint arXiv:2204.02311, 2022.

[95] E. Jang, A. Irpan, M. Khansari, D. Kappler,
F. Ebert, C. Lynch, S. Levine, and C. Finn, “Bc-z:
Zero-shot task generalization with robotic imi-
tation learning,” in Conference on Robot Learn-
ing, pp. 991–1002, PMLR, 2021.

[96] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-
actor: A multi-task transformer for robotic ma-
nipulation,” in Proceedings of the 6th Conference
on Robot Learning (CoRL), 2022.

15

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

A. Appendix
A.1. Grounded Decoding Implementation Details
We study three di�erent implementations of Grounded Decoding for each of the experimental domains.
While each instantiation applied Grounded Decoding to long-horizon planning and behavior synthesis,
di�erent components including language models and grounded models are used in each domain, as seen in
Table 5. Grounded models used in these domains include A�ordance Functions (AF), Safety Functions (S),
Preference Functions (P), and Open-Vocabulary Object Detectors (D).

Tabletop Rearrangement (Sim) MiniGrid 2D Maze (Sim) Kitchen Mobile Manipulation (Real)

LLM InstructGPT [93] InstructGPT InstructGPT + PaLM[94]

Primitives CLIPort [84] PPO [86] RT-1 [91]

Grounded Models AF + S + P AF D

Table 5: Comparison between di�erent versions of Grounded Decoding implemented in three di�erent environments.

A.2. Implementation Details of Simulated Tabletop Rearrangement
A.2.1. Tasks
There are a total of 20 tasks (templates of language instructions), listed in Table 6, grouped into three task
category: Letters, Blocks&Bowls, and Box Packing. Three categories share a total of 57 objects. For Letters
category, the goals are to rearrange the alphabetical letter objects such that they satisfy certain orders
speci�ed by the language instructions. At the beginning of each episode, task-relevant objects and a set
of 1 to 3 randomly-sampled distractor objects (except for the Letters category) are initialized at random
positions on the tabletop with �xed orientations. A minimum 15cm distance is enforced between any two
objects to avoid collision and penetration at initialization. To allow for automatic evaluations, a binary
reward function is de�ned for each task using ground-truth state of the objects. Furthermore, we implement
scripted policies for each task to collect demonstrations for training the CLIPort baseline. For certain tasks,
we also randomize the attributes mentioned in the given instructions, which can be found below:

• ⟨word⟩: hi, world, left, right, top, down, love, you
• ⟨corner/side⟩: left side, top left corner, top side, top right corner, bottom right corner, bottom side,

bottom left corner

A.2.2. Low-level Primitives
We use CLIPort [84] as the low-level primitive that can be invoked by the LLM planner, as it shows promising
results of generalization across free-form language instructions. Additionally, since the policy predicts
per-pixel a�ordance, it can be repurposed to serve as grounded models for planning for long-horizon tasks,
which we leverage in this work. The single primitive policy is trained on 50,000 pre-collected demonstrations,
across 10 training tasks, where each demonstration contains 1) language instruction of the format “pick
up [x] and place it on [y]”, 2) top-down RGB-D observation of the current scene, 3) expert pick location
expressed as pixel coordinates, and 4) expert place location expressed as pixel coordinates. The expert
actions are obtained by accessing ground-truth object pose in the simulator. We further apply substring
augmentation during training as we �nd it helps with performance on partial commands: for example, “pick
up [x]” is a substring of “pick up [x] and place it on [y]”.

A.2.3. Language Model
We use InstructGPT [93] (text-davinci-002), accessed through OpenAI API.

16

https://openai.com/api/

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

A.2.4. Grounding Functions
A�ordanceGrounding Function (AF). The a�ordance should be a function of the robot, the environment,
and the underlying policy in order to accurately determine what is possible in the scene. Given scene
image s and partially-decoded open-ended language instruction � , the primitive policy CLIPort predicts
unnormalized logits over the pixel space spick, splace ∈ ℝ480×640, respectively for the pick location and
the place location. Therefore, for any observation s and instruction � , we calculate the a�ordance as
pAF(s, �) = max(x,y)∈480×640 (spick(x, y) + splace(x, y)). The a�ordance grounding function is used for all tasks.

SafetyGrounding Function (S). World grounding for embodiment may not only be a�ordances, it can also
be crucial robotics functions like safety. While any safety function that can score a language instruction � may
be used, we implement a simple indicator to prevent the robot from interacting with knives and red boxes,
which we use as hazardous objects in this domain: pS(s, �) = 1

Z (1−I[red or knife in �])+ �
Z I[red or knife in �],

where Z is the normalizing term and � is a small value for ensuring the joint probability does not collapse
to 0. Safety grounding function is used for 3 tasks in Box Packing task family.

Preference Grounding Function (P). Robots operating alongside humans should also be aware of human
preferences, which often di�er based on the speci�c user. We choose two random objects (o1, o2) as the
preferred objects to be used for the household object sorting tasks. Note that unlike safety functions,
preferences often come in the form of “soft requirement”. Therefore, the preference grounding function is
implemented as pP(s, �) = x

Z I[o1 or o2 in �] + y
Z (1 − I[o1 or o2 in �]), where we choose x = 0.5 and y = 0.1

for our experiments. More generic preference functions may also be learned or statistically calculated based
on history of user data. Preference grounding function is used for 2 tasks in Box Packing task family.

A.2.5. CLIPort Baseline
As CLIPort [84] already takes as input a natural language instruction and is capable of directly outputting
robot actions, it bears the question whether we need a high-level planner for completing long-horizon
tasks. To this end, we additionally train two variants of multi-task CLIPort policy on 10 of the total 20 tasks
as baselines (see Table 6 for the train/test split). One variant, which we referred as “CLIPort (Short)”, is
trained only on single-step pick-and-place instructions of the format “pick up [x] and place it on [y]” on
the 10 training tasks. The decomposed pick-and-place instructions are obtained from scripted planners.
At evaluation time, the policy is fed in only the high-level instructions without any planners. The other
variant, which we referred as “CLIPort (Long)”, is trained on the high-level instructions from the 10 training
tasks (without decomposition from scripted planners). Similarly, at evaluation time, it is fed in only the
high-level instructions and evaluated on both seen and unseen instructions. Both variants are trained on
50,000 demonstrations, similar to the Grounded Decoding primitive. The goal of these baselines is to evaluate
whether solitary language-conditioned policies can perform well on long-horizon tasks and generalize to
new task instructions. Note that the CLIPort baselines are di�erent from the primitive used in Grounded
Decoding, although they share the same architecture.

17

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

A.2.6. Full Experimental Results in Simulated Tabletop Domain
Below we show the full list of tasks and the full experimental results in the simulated tabletop domain. Each
entry is the average success rate across 20 rollouts. The tasks with blue-colored background are seen tasks
and the tasks with orange-colored background are the unseen tasks. Seen tasks may be used for training for
supervised baselines (CLIPort) or may be used in the prompt for methods using language model planner.
Note that for the “Box Packing” task category, although all tasks were seen in training or the prompts, we
enforce additional safety and preference constraints for evaluation only at test time.

CLIPort +LLM +Grounded Decoding

Tasks pG Short Long Ungrounded Greedy Beam

Letters
Put the letters in alphabetical order from left to right AF 5% 20% 10% 20% 40%
Spell as much of word as you can AF 10% 60% 30% 60% 65%
Separate the vowels from the remaining letters to the bottom side AF 5% 40% 20% 50% 65%
Put the letters in reverse alphabetical order from left to right AF 15% 10% 15% 25% 25%
Correctly spell out a sport using the present letters AF 10% 10% 5% 30% 30%
Sort the geometrically symmetrical letters to the bottom side AF 5% 10% 15% 35% 50%
Separate the consonants from the remaining letters to the bottom side AF 0% 0% 25% 25% 25%
Sort the letters less than "D" according to ASCII to the bottom side AF 0% 20% 35% 70% 75%

Blocks & Bowls
Stack all the blocks AF 5% 90% 30% 75% 90%
Put all the blocks on the corner/side AF 0% 65% 50% 45% 70%
Put all the blocks in the bowls with matching colors AF 0% 30% 25% 60% 70%
Put the blocks in the bowls with mismatched colors AF 25% 30% 45% 30% 55%
Put all the blocks in di�erent corners AF 0% 5% 40% 50% 60%
Stack only the blocks of cool colors AF 5% 5% 20% 70% 70%
Stack only the blocks of warm colors AF 0% 10% 15% 45% 35%
Sort the primary color blocks to the left side AF 0% 0% 20% 25% 30%

Box Packing
Pack the objects into the brown box AF + S 20% 40% 5% 100% 90%
Pack the objects into the boxes AF + S 10% 20% 5% 75% 70%
I’d like some snacks on the right side AF + P 15% 20% 15% 40% 55%
Pack me a picnic box AF + S + P 15% 30% 20% 100% 95%

Table 6: Full Experimental Results in Simulated Tabletop Rearrangement Tasks. The tasks with blue-colored back-
ground are seen tasks and the tasks with orange-colored background are the unseen tasks. *Box Packing tasks are all
seen during training, but safety and preference requirements are only enforced during evaluation.

18

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

A.3. Implementation Details of MiniGrid 2D Maze
A.3.1. Environment Setup
We use the open-source gym-minigrid suite of environments to evaluate our method with one simple
change — instead of the default observation space which is a 7 × 7 egocentric window, our agent has access
to entire grid — that allows us to simplify the tasks by removing partial observability [72].

A.3.2. Tasks
The tasks are grouped in three categories (please see Table 7 for example instructions):

1. Easy: Simple tasks where the horizon is short (10-30 steps) and fully described by the textual instruction,
e.g. OpenDoors and PutNext. The short horizon makes them relatively easy for a wide range of
HRL algorithms. The instructions for these tasks generally spell out each individual skill, making them
particularly easy for high-level planners based on language modeling.

2. Medium: Combination of short and long horizon tasks (up to 80 steps) with step-by-step textual
instructions, e.g. LockedRoom. While being signi�cantly longer, these tasks also tend to have
instructions that spell out the low-level tasks (see Table 7).

3. Hard: Complex, long horizon instructions (over 100 steps) with short, ambiguous instructions that
necessitate multi-step reasoning and e�cient exploration, e.g. MultiRoom and BlockedUnlock.
In addition to being long-horizon, the instructions in this case tend to be ambiguous and under-speci�ed,
e.g. "traverse through the rooms to get to the goal", which does not provide enough context for any
blind planning agent.

Di�culty Task Name Example Instruction

Easy OpenDoors open door blue, then open door red
PutNext move the red ball next to the green box

Medium LockedRoom get the red key from the purple room, open the red door and go to the goal

Hard MultiRoom traverse the rooms to get to the goal
BlockedUnlock pick up the blue box

Table 7: Example Instructions in Minigrid

A.3.3. Language Model
We use InstructGPT [93] (text-davinci-002), accessed through OpenAI API. The prompts used can
be found in Section A.5.

We found the prompts to be generally su�cient for solving the “seen” tasks, as well as “unseen” tasks,
i.e. tasks that do not have an example in the context. Empirically, we did not �nd any improvements by
including more then 3 example tasks in the prompt — we hypothesize that this is likely due to the shared
low-level primitives across tasks. For all Minigrid experiments presented in this paper, we used the prompt
shown in Section A.5.

A.3.4. Low-level Primitives
To train low-level primitives, we train an RL agent to solve a wide range of short-horizon subtasks (under
10 steps) that are shared across the various Minigrid tasks — go to <obj>, pick up <obj>, drop
<obj>, open <obj>. Rather than training individual skills for each of them [72], we train a single
multi-task policy that is conditioned on the CLIP embeddings [78] of the task strings. This scheme allows
some robustness to synonyms and ambiguous task speci�cations, and has been widely used in learning
language-grounded policies [95, 96].

19

https://openai.com/api/

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

We train these primitives using PPO [86], as recommended by the environment developers [85]. Each
of these skills are trained with a sparse outcome reward (+1 if a trajectory is successful, 0 otherwise). In
addition to these low-level skills, we perform a form of hindsight relabeling where “substrings“ of the task
strings are masked to allow generalization to partial strings, e.g. “go to red” may be interpreted as “go to red
key” or “go to red door”, and our masking strategy allows the multi-task policy to execute tasks speci�ed by
partially complete strings, if necessary.

A.3.5. Grounded A�ordance Function
We use the task string-conditioned value function estimates from our learned policy to obtain a visually
grounded a�ordance function.

A.3.6. Additional Qualitative Results

Step 1: go to the purple door and open it
Step 2: go to the green door and open it
Step 3: go to the purple door and open it
Step 4: go to the green door and open it
Step 5: go to the green door and open it
Step 6: go to the goal

User

Traverse the
rooms to get
to the goal.

Language Model Grounded Model (Affordance) Combined Score

Step 1: go to the purple door and open it
Step 2: go to the green key
Step 3: pick up the green key
Step 4: go to the green door and open it
Step 5: go to the goal

Get the green
key from the
purple room,
unlock the
green door and
go to the goal.

Step 1: go to the obstacle
Step 2: pick up the obstacle
Step 3: place the obstacle
Step 4: go to the blue key
Step 5: pick up the blue key
Step 6: go to the blue door and open it
Step 8: drop the blue key
Step 9: go to the purple box
Step 10: pick up the purple box

Pick up the
purple box.

User

User

Figure 8: Minigrid Domain

20

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

A.4. Implementation Details of Real-World Mobile Manipulation
A.4.1. Tasks

Instruction
put an energy bar and water bottle on the table
bring me a lime soda and a bag of chips
Can you throw away the apple and bring me a coke
bring me a 7up can and a tea
move an multigrain chips to the table and an apple to the far counter
move the lime soda, the sponge, and the water bottle to the table
bring me an apple, a coke, and water bottle

Table 8: List of unambiguous SayCan instructions

Instruction
I want to wipe some spill.
Bring me a fruit
Bring me a snack
Bring me a bag of chips
Bring me a bag of snack
Bring me a bag of chips and something to wipe a spill
Bring me a bag of chips and something to drink
Bring me a bag of chips and a soda
Human: I want a soda that is not coke, and a fruit.
I want a fruit and a soda

Table 9: List of ambiguous SayCan instructions

A.4.2. Language Model
For planning, we use PaLM [94], a 540B parameter language model trained on a large datasets that include
high-quality web documents, books, Wikipedia, conversations, and GitHub code. Before planning, we use
InstructGPT [93] (text-davinci-002), accessed through OpenAI API. to generate the (grounded)
chain of thought.

We used square bracket to indicate grounded decoding, as illustrated in Fig. 5. The prompts are shown in
Listing 3.

A.4.3. Low-level Primitives
We use a combination of learned and scripted control policies for navigation and manipulation, following
the implementation described in SayCan [40] and RT-1 [91]. The manipulation policies for the picking
action are learned using Behavior Cloning (BC) on 68000 demonstrations and 12000 autonomous successes
that were collected over the course of 11 months using a �eet of 10 robots. The demonstrations are collected
by teleoperators using VR headset controllers to track the motion of their hand, which is then mapped onto
the robot’s end-e�ector pose. The navigation policies are scripted, based on a ground-truth map as well as a
learned perception module for collision avoidance and planning. The placing actions follow pre-computed
motions only when preceded by a navigation policy. The Value Functions used by SayCan for a�ordance

21

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

grounding are provided by the Q-networks of trained RL agents; we follow the RL training setup described
in [40].

A.4.4. Open-Vocabulary Detector Grounding Function
We use owl-vit [81] as our grounding model. It takes in an image and a natural language query, and returns
a list of bounding boxes with scores. We take the maximum score a the grounding function.

More examples of object detection as a grounding function can be found in Fig. 9.

Human: I want a soda that is not coke, and a fruit.
Robot thought: I will find the [pepsi] and the [apple]

Human: Bring me a bag
of chips.
Robot thought: I will
bring the [kettle
chips]

Human: I want to wipe
some spill.
Robot thought: I will
bring the [paper towel]

Figure 9: Additional examples of using open-vocabulary object detection as a grounding function in Real-World
Kitchen Mobile Manipulation Domain.

22

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

A.5. Prompts

Listing 1: Grounded Decoding Prompt in Simulated Tabletop Rearrangement Domain
Task: Pack all letter objects on the brown box
Step 1: pick up the e and place it on the brown box
Step 2: pick up the g and place it on the brown box
Step 3: done

Task: Put the letters on the tables in alphabetical order
Step 1: pick up the c and place it on the bottom left side
Step 2: pick up the d and place it on the right of c
Step 3: pick up the i and place it on the right of d
Step 4: pick up the l and place it on the right of i
Step 5: pick up the w and place it on the right of l
Step 6: done

Task: Spell as much of "blue" as you can
Step 1: pick up the l and place it on the bottom left side
Step 2: pick up the the u and place it on the right of l
Step 3: pick up the the e and place it on the right of u
Step 4: done

Task: Separate the vowels from the remaining letters
Step 1: pick up the i and place it on the bottom side
Step 2: pick up the o and place it on the bottom side
Step 3: done

Task: Stack all the blocks
Step 1: pick up the brown block and place it on the pink block
Step 2: pick up the cyan block and place it on the brown block
Step 3: pick up the orange block and place it on the cyan block
Step 4: pick up the gray block and place it on the orange block
Step 5: done

Task: Put all the blocks on the bottom left corner
Step 1: pick up the white block and place it on the bottom left corner
Step 2: pick up the yellow block and place it on the bottom left corner
Step 3: pick up the green block and place it on the bottom left corner
Step 4: pick up the blue block and place it on the bottom left corner
Step 5: pick up the purple block and place it on the bottom left corner
Step 6: done

Task: Put all the blocks in the bowls with matching colors
Step 1: pick up the cyan block and place it on the cyan bowl
Step 2: pick up the purple block and place it on the purple bowl
Step 3: pick up the brown block and place it on the brown bowl
Step 4: pick up the pink block and place it on the pink bowl
Step 5: done

Task: Pack the items into any box
Step 1: pick up the donut stick and place it on the red box
Step 2: pick up the pepsi and place it on the brown box
Step 3: pick up the peach and place it on the brown box
Step 4: pick up the strawberry and place it on the red box
Step 5: done

Task: Pack the items on the table into the brown box
Step 1: pick up the knife and place it on the brown box
Step 2: pick up the plum and place it on the brown box
Step 3: pick up the pepsi and place it on the brown box
Step 4: pick up the cupcake and place it on the brown box
Step 5: done

Task: Pack the items on the table into the brown box
Step 1: pick up the i and place it on the brown box
Step 2: pick up the green block and place it on the brown box
Step 3: pick up the l and place it on the brown box
Step 4: done

Task: Can you put some snacks on the right side for me?
Step 1: pick up the plum and place it on the right side

23

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

Step 2: done

Task: Can you pack my picnic box for me?
Step 1: pick up the orange and place it on the picnic box
Step 2: pick up the diet pepsi and place it on the picnic box
Step 3: pick up the knife and place it on the picnic box
Step 4: done

24

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

Listing 2: Grounded Decoding Prompt in MiniGrid 2D Maze Domain

You are a 2D maze-solving agent with access to a variety of low-level skills such as picking
up or dropping objects, navigating to doors/keys/boxes, and opening/closing doors. Here
are some example tasks:

Task: get the green key from the purple room, unlock the green door and go to the goal
Step 1: go to the purple door and open it
Step 2: go to the green key
Step 3: pick up the key
Step 4: go to the green door and open it
Step 5: go to the goal.

Task: pick up the purple box
Step 1: go to the green obstacle
Step 2: pick up the obstacle
Step 3: place the obstacle
Step 4: go to the blue key
Step 5: pick up the blue key
Step 6: go to the blue door and open it
Step 8: drop the blue key
Step 7: go to the purple box
Step 8: pick up the purple box.

Task: traverse the rooms to get to the goal
Step 1: go to the purple door and open it
Step 2: go to the green door and open it
Step 3: go to the purple door and open it
Step 4: go to the green door and open it
Step 5: go to the green door and open it
Step 6: go to the goal.

Now your turn.

25

Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents

Listing 3: Grounded Decoding Prompt in Real-World Kitchen Mobile Manipulation Domain

The following objects are in the scene: 7up, apple, banana, mango, tea, multigrain chips,
kettle chips, jalapeno chips, rice chips, coke, grapefruit soda, pepsi, redbull, energy
bar, lime soda, sponge, paper towel, and water bottle.

The following locations are in the scene: close counter, far counter, table, trash, bowl.
The robot will always put object name in brackets [].

Robot: I am a robot that can bring objects to you.
Human: I am hungry.
Robot thought: I will find the [multigrain chips].
Robot plan: 1. Find the multigrain chips
2. Pick up the multigrain chips
3. Bring it to you
4. Put it down
5. Done

Robot: I am a robot that can bring objects to you.
Human: Throw away the fruit.
Robot thought: I will find the [mango] and move it to the trash.
Robot plan: 1. Find the mango
2. Pick up the mango
3. Go to the trash
4. Put it down
5. Done

Robot: I am a robot that can bring objects to you.
Human: (inject instruction).
Robot thought:

26

	Introduction
	Related Work
	Grounded Decoding
	LLMs and Grounding Models
	Problem formulation.
	Algorithm – Grounded Decoding.
	Techniques for Obtaining Grounding
	Comparisons to Prompt-based Methods

	Experiments
	Long-Horizon Tabletop Manipulation
	2D Maze
	Mobile Manipulation in a Physical Kitchen

	Analysis
	Comparison to SayCan
	Breakdown of Failure Reasons
	Grounded Action Manifold

	Conclusions, Limitations, & Future
	Appendix
	Grounded Decoding Implementation Details
	Implementation Details of Simulated Tabletop Rearrangement
	Tasks
	Low-level Primitives
	Language Model
	Grounding Functions
	CLIPort Baseline
	Full Experimental Results in Simulated Tabletop Domain

	Implementation Details of MiniGrid 2D Maze
	Environment Setup
	Tasks
	Language Model
	Low-level Primitives
	Grounded Affordance Function
	Additional Qualitative Results

	Implementation Details of Real-World Mobile Manipulation
	Tasks
	Language Model
	Low-level Primitives
	Open-Vocabulary Detector Grounding Function

	Prompts

